Online Adaptive Continuous Wavelet Transform and Fuzzy Logic Based High Precision Fault Detection of Broken Rotor Bars for IM

نویسنده

  • Ali Saghafinia
چکیده

This paper presents an intelligent fault detection based on adaptive continuous wavelet transform of broken rotor bars for Induction Motor (IM). Broken rotor bars, bearing decay, eccentricity, as motor faults appears as different frequencies in the stator current signals. The stator current and speed signals at deferent operation conditions obtained from the winding function are analysed through the adaptive continuous wavelet transform (CWT) to detect the amplitudes and frequency components corresponding to different broken bar fault and load conditions. The adaptive coefficients of CWT based on the harmonics amplitude, are applied to train a fuzzy logic controller (FLC) in simulation. Then, detection of the fault condition are done based on the adaptive CWT and trained FLC in both simulation and real-time. The experimental results are confirmed the simulation results and show the effectiveness of the proposed method to detect the motor fault conditions accurately.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Fuzzy Controller for Automatic Diagnosis of Rotor Broken Bars in Industrial Induction Motors

This paper presents an online trained Fuzzy logic system based on FPGA to fault detection of broken rotor bar for squirrel cage induction motor. Fuzzy logic approach may help to diagnose induction motor faults in remote site and transmit fault diagnosis (via GSM\GPRS cellular network technology) to maintenance office or a programmed cell phone. The motor current signal is analyzed through the F...

متن کامل

Wavelet Transform based Broken Rotor-bar Fault Detection and Diagnosis Performance Evaluations

This paper presents the performances evaluation of different wavelet transform under broken rotor bars fault diagnosis. In this report, stator phase current was used for wavelet analysis. Discrete wavelet transform (DWT) coefficients of stator current in a specific frequency band are derived and analyzed. Wavelets db8, db9, db10, sym7 and sym8 are employed to analyze broken bar distorted stator...

متن کامل

Neural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors

This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic&#10model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in o...

متن کامل

Simultaneous Detection of Broken Rotor Bar Fault and PQ disturbances in the Supply to Induction Motor Using Neuro-Fuzzy

This paper presents a methodology for the detection of broken rotor bar fault and power quality (PQ) disturbances in the supply to induction motor. These faults lead to increase in the temperature and decrease in the efficiency of the induction motor. Wavelet transform is applied to the stator current, for the extraction of the signature of the fault. These wavelet coefficients are fed as input...

متن کامل

Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network

This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017